
Blockmon: A High-Performance Composable Network
Traffic Measurement System

Felipe Huici?, Andrea di Pietro±, Brian Trammell§, Jose Maria Gomez Hidalgo†, Daniel Martinez Ruiz†, Nico d’Heureuse?

?NEC Europe Ltd, ±CNIT, †OPTENET, §ETH Zurich

ABSTRACT
Passive network monitoring and data analysis, crucial to the
correct operation of networks and the systems that rely on
them, has become an increasingly difficult task given con-
tinued growth and diversification of the Internet. In this
demo we present Blockmon, a novel composable measure-
ment system with the flexibility to allow for a wide range
of traffic monitoring and data analysis, as well as the neces-
sary mechanisms to yield high performance on today’s mod-
ern multi-core hardware. In this demo we use Blockmon’s
GUI to show how to easily create Blockmon applications
and display data exported by them. We present a simple
flow meter application and a more involved VoIP anomaly
detection one.

1. INTRODUCTION
Two salient trends have dominated Internet-scale mea-

surement over the past decade: the continued growth of the
Internet, both in terms of attached nodes and total data
transferred; and the diversification of devices attached to
and applications running over the network.

These challenges point to the need for a high-performance,
yet easily-extensible solution. To this end we demonstrate
Blockmon, a system for supporting high-performance com-
posable measurement: building fast network measurement
applications out of small, discrete blocks.

Systems work in network measurement is by no means a
new field. The modular principles in Blockmon were inspired
by the Click modular router [4], though Click is oriented
towards packet-based processing. Other programmable tools
such as CoMo [3] or PF RING [2] are either less flexible than
or do not perform as well as Blockmon.

Blockmon contributes some key innovations to this wide
base of work, focusing on applying programmable measure-
ment to today’s traffic loads and diversity while maximizing
the use of modern, multi-core commodity hardware to en-
sure high performance. Blockmon is available as open-source
software at http://blockmon.github.com/blockmon.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

2. SYSTEM DESCRIPTION
At a high-level, Blockmon provides a set of units called

blocks, each of which performs a certain discrete processing
action, for instance parsing a DNS response, or counting
the number of distinct VoIP users on a link. The blocks
communicate with each other by passing messages via gates;
one block’s output gates are connected to the input gates of
other blocks, which allows runtime indirection of messages.
A set of inter-connected blocks implementing a measurement
application is called a composition; a generic composition is
shown in figure 1.

Composition

Source
Block

O

BlockAI O

BlockBI O

Export
Block

IBlockCI O

Figure 1: Example composition

The Message class provides a basic interface for identify-
ing message types, and for supporting import and export
of messages in order to connect compositions across nodes.
Messages are constant in order to ensure that they can be
shared without contention among multiple blocks concur-
rently, and provide a tagging mechanism to allow Blocks to
add small bits of data to a message in a thread-safe manner.
This latter mechanism allows blocks to process high volume
messages (e.g., packets) in a pipeline without incurring the
overhead of having to allocate new message objects.

The assignment of activities to threads and threads to
CPU cores can have a large impact on performance [1].
To leverage this, Blockmon schedules work in thread pools.
Each block is assigned to a pool via the composition, and
pools can be pinned to specific cores. This model allows
flexibility in terms of which block is executed on which CPU
core.

Input gates are implemented either via direct invocation,
where messages are passed via method call; or indirect in-
vocation, where messages are passed via a lock-free rotating
queue. Direct invocation causes the downstream block to
run within the thread of the upstream block, while indirect
invocation separates threads from each other without lock
contention. Whether blocks are invoked directly or indi-
rectly is another method for tuning performance.

Additional performance improvements include efficient mes-
sage passing via C++11 shared pointers and object-move
semantics, batch allocation of memory for messages, and

http://blockmon.github.com/blockmon

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 200 400 600 800 1000 1200 1400 1600

T
h
ro

u
g
h

p
u
t

(i
n

 M
b

/s
)

Packet Size (in bytes)

blockmon
yaf

click
como

theoretical max

Figure 2: Performance comparison between Block-
mon and other existing systems.

support for fast capture blocks using novel packet capture
engines such as PFQ [5]. These improvements combine to
produce the results in figure 2, which show Blockmon out-
performing other systems when they all run a simple applica-
tion that keeps per-flow statistics (byte and packet counts).

3. DEMONSTRATION DESCRIPTION
We will demonstrate two applications built on top of Block-

mon: a simple monitoring application that keeps per-flow
statistics such as byte and packet counts, and a more com-
plex application that can detect anomalies or abuse in VoIP
CDR (call data record) traces. The demonstration will focus
on the detection of telemarketing activity. We will show the
operation of Blockmon together with a Python-based back-
end daemon and a web GUI front-end implemented in PHP
and Javascript.

The Blockmon GUI consists of two views. The first is the
composition view, which allows users to graphically design
a composition and run it in the system. This view connects
to the Blockmon back-end via a JSON-based protocol and
retrieves a list of available blocks, as well as information
about them (e.g., what they do, what parameters and gates
they have, etc). The user then drags and drops blocks onto
the main canvas, configures their parameters and connects
them. In addition, the GUI allows blocks to be mapped to
threadpools, and threadpools to be mapped to the available
CPUs (see figure 3).

Once this is all done, the GUI sends a command to the
back-end to start the composition running. While running,
the user can inspect internal variables of blocks. For in-
stance, the PacketCounter block has a variable pktcnt which
returns the number of packets the block has seen so far; writ-
ing to the reset variable resets this count.

The GUI’s second view is a dashboard, which is in charge
of displaying the actual data produced by the running Block-
mon compositions. The dashboard provides a number of dis-
play types based on the Google Chart Tools1 and Highcharts
JS2 (e.g., line graphs, bar and pie charts, etc.) which are
constantly updated according to the output of the composi-
tions. The user can configure the most appropriate graphs
to monitor the output of a composition, which is temporar-
ily stored in an internal buffer to allow the dashboard graph
to read and update the results on the screen.

The simple flow statistics application is intended as a
“Hello, World” demonstration of Blockmon and the concepts
of composable measurement. To demonstrate it, we draw
its composition in the GUI, then start it. The composition

1https://google-developers.appspot.com/chart/
interactive/docs/index
2http://www.highcharts.com/

Figure 3: Blockmon GUI showing a composition.

keeps track of flows, periodically exporting data in IPFIX [6]
format about the N flows with the largest byte and packet
counts. We then show how to set up the dashboard to dis-
play a graph showing the moving byte rates of the top N
flows. We finally run the drawn composition and show the
tracked flows statistics in the configured dashboard graphs.

We then turn to a VoIP anomaly detection application,
intended as a demonstration of the ease of porting an ex-
isting non-trivial application to Blockmon. This application
detects anomalies such as telemarketers based on CDR (call
data record) traces. Once again we show how to draw up
its composition and set up the dashboard in the GUI. This
time the dashboard displays a listing of the most anomalous
users, including time-varying anomaly detection scores for
the system’s various anomaly detection algorithms. We will
also show how to use the composition view to inspect the
value of a block’s variable by displaying the rate at which
the block CDRSource is processing CDRs.

4. REFERENCES
[1] Egi, N., Greenhalgh, A., Handley, M., Hoerdt,

M., Huici, F., and Mathy, L. Towards high
performance virtual routers on commodity hardware. In
Proceedings of ACM CoNEXT 2008 (Madrid, Spain,
December 2008).

[2] Fusco, F., and Deri, L. High speed network traffic
analysis with commodity multi-core systems. In
Proceedings of the 10th annual conference on Internet
measurement (2010), IMC ’10, ACM, pp. 218–224.

[3] Iannaccone, G. Fast prototyping of network data
mining applications. In Passive and Active
Measurement Conference 2006 (Adelaide, Australia,
March 2006).

[4] Kohler, E., Morris, R., Chen, B., Jahnotti, J.,
and Kasshoek, M. F. The click modular router. ACM
Transaction on Computer Systems 18, 3 (2000),
263–297.

[5] N.Bonelli, Pietro, A. D., Giordano, S., and
Procissi, G. On multi–gigabit packet capturing with
multi–core commodity hardware. In Passive and Active
Measurement conference (PAM) (2012).

[6] Trammell, B., and Boschi, E. An introduction to ip
flow information export. IEEE Communications
Magazine 49, 4 (Apr. 2011).

https://google-developers.appspot.com/chart/interactive/docs/index
https://google-developers.appspot.com/chart/interactive/docs/index
http://www.highcharts.com/

	Introduction
	System Description
	Demonstration Description
	References

